
Representations of symmetry operations 

Triphenyl phosphine has three hexagonal planar rings attached to a central phosphorus atom so that 

the molecule has 3-fold symmetry about a vertical axis passing through the phosphorous atom.    

 
Triphenyl phosphine 

The molecule has six sets of three equivalent carbon atoms and five sets of three equivalent hydrogen 

atoms.   Looking again at just the carbon atoms nearest to the phosphorus atom, numbering them 1, 2 

and 3 as in the image above, we noted that an application of the 3-fold generator operation c 

redistributed the three atoms as follows 

(
1
2
3
) 

𝑐
→  (

3
1
2
) 

This redistribution of the atoms from their original positions is faithfully mimicked by a permutation 

matrix as follows 

(
3
1
2
) = (

0 0 1
1 0 0
0 1 0

) (
1
2
3
) 

In this way the following three permutation matrices are obtained 

𝑃(𝐸 ) = (
1 0 0
0 1 0
0 0 1

)          𝑃(𝑐 ) = (
0 0 1
1 0 0
0 1 0

)          𝑃(𝑐2 ) = (
0 1 0
0 0 1
1 0 0

)   

Permutation matrices 𝑃(𝑥 ) mimic the behaviour of operations 𝑥 and must multiply out in same way 

as the operations themselves.   For example,  𝑐𝑐2  = 𝐸 and so 𝑃(𝑐 )𝑃(𝑐2 ) = 𝑃(𝐸)in the matrix 

multiplication 

(
0 0 1
1 0 0
0 1 0

)(
0 1 0
0 0 1
1 0 0

) = (
1 0 0
0 1 0
0 0 1

) 

Only three atoms have so far been considered but the molecule has eleven sets of three equivalent 

atoms and a central atom and so 11 ×  3 + 1 = 34 atoms and its symmetry operations would need to 

be described by a 34 x 34 square matrix.   Fortunately, the atoms in each equivalence set are only 

exchanged with others of their equivalence set and the permutation matrix consists of eleven 3 x 3 

submatrices identical to those above positioned on the leading diagonal together with a single 1 to 

represent the central atom. 



Each of the 3 × 3 matrices can be reduced to irreps that are characteristic of the group being 

represented then the irreps deduced are added together.   This is done by adding up the elements on 

the leading diagonals of each of the permutation matrices to deduce the character for each matrix.   In 

the case of the three equivalent atoms above this gives 𝐶ℎ(𝐸 ) = 3, 𝐶ℎ(𝑐 ) = 0 and 𝐶ℎ(𝑐2 ) = 0.   

Group theory requires that the characters of the irreps add up to that of the larger representation and 

this allows the irreps to be deduced.   Fortunately, this procedure is never required in practice because  

𝑛 equivalent atoms in an 𝑛 -fold cyclic group always produces one of each irrep of the group.   All 

that is required is the list below of the possible irreps for each order of rotation 

 

 

 

 

 

All that needs to be done is to find the order of the rotation then assign its irreps according to the table 

above.   Cyclic group irrep symbols are 1 dimensional so 3 x 3 matrices like the those above reduce to 

three 1 x 1 irreps i.e. three numbers.   Matrices from one equivalence set reduce to irreps 

𝐴, 𝐸+1, 𝐸−1and since the other 10 behave in the same way a total irrep count for the whole molecule 

will be 11(𝐴, 𝐸+1, 𝐸−1) + 𝐴.   Group theory requires that the irreducible representations of each 

equivalence set contain the most symmetrical irrep once and only once so a single atom always has 

the most symmetrical irrep.   The extension to other cyclic groups is simple and straightforward. 

Dihedral symmetry groups 

The trisoxalato iron III molecule ion shown below was used to illustrate symmetry operations in 

dihedral goups 

 
the trisoxalato iron III molecule ion 𝐹𝑒(𝐶2𝑂4)3 

This molecule belongs to symmetry group 3 but also has 2-fold symmetry about the y axis and so 

belongs to the higher order dihedral symmetry group 𝐷3.   Atoms 1,2 and 3 are exchanged by 3-fold 

symmetry operations in the same way as in the cyclic example above.    A second set of atoms 

numbered 4,5 and 6 are also exchanged between themselves during these operations.   When this 

molecule is considered to have 𝐶3 symmetry the matrix representations of these two sets of atoms will 

Cyclic group irreps 

𝑛 Irreps 𝑛 Irreps 

1 𝐴 2 𝐴, 𝐵 

3 𝐴, 𝐸+1, 𝐸−1 4 𝐴, 𝐵, 𝐸+1, 𝐸−1  
5 𝐴, 𝐸+1, 𝐸−1, 𝐸+2, 𝐸−2 6 𝐴, 𝐵, 𝐸+1, 𝐸−1, 𝐸+2, 𝐸−2  

7 𝐴, 𝐸+1, 𝐸−1, 𝐸+2, 𝐸−2, 𝐸+3, 𝐸−3 8 𝐴, 𝐵, 𝐸+1, 𝐸−1, 𝐸+2, 𝐸−2, 𝐸+3, 𝐸−3  

 ……………………   

∞ 𝐴, 𝐸+1, 𝐸−1, 𝐸+2, 𝐸−2, . . , 𝐸∞   



have irreps  2(𝐴, 𝐸+1, 𝐸−1).   The matrix itself 𝑃(𝑐) is just two 3 x 3 matrices on the leading diagonal 

of a 6 x 6 matrix 

(

  
 

3
1
2
6
4
5)

  
 
= 

(

  
 

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0)

  
 

(

  
 

1
2
3
4
5
6)

  
 

 

 

A 2-fold rotation u about the horizontal y axis exchanges the two sets of atoms, creating a new 

equivalence set of 6 atoms from the two sets of 3 equivalent atoms with matrix 𝑃(𝑢)  

  

(

  
 

4
6
5
1
3
2)

  
 
=  

(

  
 

0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0)

  
 
 

(

  
 

1
2
3
4
5
6)

  
 

 

 

It is worth checking that the matrices multiply out in the same way as the operations  

Operation 𝑢𝑐 = 𝑢1 so we expect 𝑃(𝑢)𝑃(𝑐) =  𝑃(𝑢1) 

 

(

  
 

0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0)

  
 
 

(

  
 

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0)

  
 
=

(

  
 

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0)

  
 

 

A quick check of the image above shows that this is transformation 𝑢1 

(

  
 

6
5
4
3
2
1)

  
 
=   

(

  
 

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0)

  
 

(

  
 

1
2
3
4
5
6)

  
 

 

 

It is already clear that, when considered as a 3-fold cyclic group, the six equivalent atoms consist of 

two sets of 3 equivalent atoms with irreps 2(𝐴 + 𝐸+1 + 𝐸−1).   An additional 2-fold rotational 

symmetry at right angles to the main axis merges conjugate pairs of E irreps to form a single two-

dimensional representation.   At the same time A and B irreps are split into two distinct one-

dimensional irreps with subscripts 1 and 2.   These changes produce the collection of the irreducible 

representations shown below.   The cyclic irreps therefore become 𝐴1 + 𝐴2 + 2𝐸1 in a dihedral 

environment because the most symmetrical irrep 𝐴1must occur once and only once so the second 

subscript has to be 2. 



 

 

 

 

 

 

 

Representations for non-rotational group molecules 

Non-rotational groups may be derived from rotational groups in two ways: either by combining 

rotational operations with mirror reflection or as a direct product of the rotational group with space 

inversion (i).   These possibilities are shown in the table of Laue classes below with rotational group 

G on the left semi-direct product groups 𝐺̅ in the middle and direct product groups 𝐺𝑖 on the right.   

One row of the table contains the groups of one Laue class 

Point groups in 3-dimensional space 

Partition System 𝐺 𝐺̅ 𝐺𝑖 

 Triclinic 1   𝑖 

Asymmetric Monoclinic 2  2̅ 2𝑖 

 Orthogonal 22 22̅  22𝑖 

 Trigonal 3   3i 

Symmetric  32 32̅  32𝑖 

 Tetragonal 4  4̅ 4i 

  42 42̅ 4̅2 42𝑖 

 Pentagonal 5   52 

  52 52̅  52𝑖 

 Hexagonal 6  6̅ 6𝑖 

  62 62̅ 6̅2 62𝑖 

 Heptagonal 7   7𝑖 

  72 72̅  72𝑖 

 Octagonal 8   8̅ 8𝑖 

  82 82 8̅2 82𝑖 

  …………………. 

 Infinite ∞   ∞𝑖 

  ∞2 ∞2̅  ∞2𝑖 

 Tetrahedral 23   23𝑖 

Spherical Octahedral 432  4̅32 432𝑖 

 Icosahedral 532   532𝑖 

 
Point groups in a Laue class, other than the centrosymmetric group, are distinct manifestations of a 

single abstract group and, since irreps are characteristic of the abstract group rather than the individual 

point group, they all have the same irreducible representations and these are shown in the cyclic and 

dihedral irrep tables above.   The centrosymmetric group is the direct product of any other member of 

𝑛 Dihedral irreps n Dihedral irreps 

2 𝐴1, 𝐴2, 𝐵1, 𝐵2  3 𝐴1, 𝐴2, 𝐸1  

4 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐸1 5 𝐴1, 𝐴2, 𝐸1, 𝐸2  

6 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐸1, 𝐸2  7 𝐴1, 𝐴2, 𝐸1, 𝐸2, 𝐸3  

8 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐸1, 𝐸2, 𝐸3   

 and so on until   

∞ 𝐴1, 𝐴2, 𝐸1, 𝐸2, 𝐸3, 𝐸4, . . , 𝐸∞   



a Laue class with a 2-fold cyclic group representing space inversion.   Its irreps are also direct 

products of the class irreps, producing two sets of irreps distinguished by g and u subscripts. 

Take the ammonia molecule with point group symmetry 32̅ as an example.   This group belongs to the 

3-fold dihedral Laue class and has the irreps for this group shown above.   In point group 32̅ the 

three equivalent hydrogen atoms have irreps 𝐴, 𝐸+1, 𝐸−1and the nitrogen atom contributes irrep 𝐴.   

Upgrading this to the dihedral class gives irreps 𝐴1 + 𝐸1 for the hydrogen atoms and 𝐴1 for the 

nitrogen atom so the irrep total for the molecule is 2𝐴1 + 𝐸1 

Staggered ethane belongs to point group 32𝑖 of order 12 and is the centrosymmetric group of the 

3-fold dihedral Laue class.   It has two sets of three hydrogen atoms attached to two carbon 

atoms that can be imagined to be placed in the z axis.  When considered as a cyclic molecule 

the two sets of three equivalent hydrogen atoms contribute irreps 2(𝐴, 𝐸+1, 𝐸−1) and the carbon 

atoms contribute 2𝐴 because they are isolated atoms and both have the most symmetric irrep.  

Looking at this molecule as a dihedral point group, the two sets of hydrogen atoms merge to 

become a single set of six equivalent atoms with irreps 𝐴1 + 𝐴2 + 2𝐸1, following the reasoning 

in the example above.   The two isolated carbon atoms become two equivalent atoms in the 

dihedral group because they can rotate to exchange position and their irreps in this group 

become 𝐴1 + 𝐴2.   Finally, the dihedral irreps acquire g and u subscripts and a simple rule helps this 

process: if an atom is positioned at the centre of symmetry it contributes the most symmetrical irrep of 

the group otherwise there must be an equal number of g and u subscripts for each equivalence set.   

So, starting with irreps 𝐴1 + 𝐴2 + 2𝐸1we have to add subscript g to the 𝐴1 irrep to obtain  the most 

symmetric irrep and, in order to then keep the numbers of subscripts equal we obtain 𝐴1𝑔 + 𝐴2𝑢 +

𝐸1𝑔 + 𝐸1𝑢.   Similarly, the carbon atom irreps become 𝐴1𝑔 + 𝐴2𝑢  and the total for the molecule 

becomes 

2𝐴1𝑔 + 2𝐴2𝑢 + 𝐸1𝑔 + 𝐸1𝑢 

This completes one example for each of the 3-fold dihedral Laue class groups.   Irreps can always 

be deduced by inspection and the laborious us of the “Great Orthogonality Theorem” is 

completely unnecessary simply to find irreps. 


