Representations of symmetry operations

Triphenyl phosphine has three hexagonal planar rings attached to a central phosphorus atom so that
the molecule has 3-fold symmetry about a vertical axis passing through the phosphorous atom.

Triphenyl phosphine

The molecule has six sets of three equivalent carbon atoms and five sets of three equivalent hydrogen
atoms. Looking again at just the carbon atoms nearest to the phosphorus atom, numbering them 1, 2
and 3 as in the image above, we noted that an application of the 3-fold generator operation c

redistributed the three atoms as follows
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This redistribution of the atoms from their original positions is faithfully mimicked by a permutation
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In this way the following three permutation matrices are obtained

1 00 0 0 1 01 0
P(E)=(0 1 0) P(c)=<1 0 0) P(c2)=<o 0 1)
0 0 1 01 0 1 00

matrix as follows

Permutation matrices P(x ) mimic the behaviour of operations x and must multiply out in same way
as the operations themselves. For example, cc? = E and so P(c )P(c? ) = P(E)in the matrix

multiplication
0 0 1/0 1 O 1 0 0
1 0 0Jfo 0 1)=(0 1 0)
0 1 0/\1 0 O 0 0 1

Only three atoms have so far been considered but the molecule has eleven sets of three equivalent
atoms and a central atom and so 11 X 3 4+ 1 = 34 atoms and its symmetry operations would need to
be described by a 34 x 34 square matrix. Fortunately, the atoms in each equivalence set are only
exchanged with others of their equivalence set and the permutation matrix consists of eleven 3 x 3
submatrices identical to those above positioned on the leading diagonal together with a single 1 to
represent the central atom.



Each of the 3 X 3 matrices can be reduced to irreps that are characteristic of the group being
represented then the irreps deduced are added together. This is done by adding up the elements on
the leading diagonals of each of the permutation matrices to deduce the character for each matrix. In
the case of the three equivalent atoms above this gives Ch(E ) = 3, Ch(c) = 0 and Ch(c?) = 0.
Group theory requires that the characters of the irreps add up to that of the larger representation and
this allows the irreps to be deduced. Fortunately, this procedure is never required in practice because
n equivalent atoms in an n -fold cyclic group always produces one of each irrep of the group. All
that is required is the list below of the possible irreps for each order of rotation

Cyeclic group irreps

Irreps Irreps
A A B
AEE_4 ABE.,E_4

AEy,E_1,Evp E_
A' E+1' E—l' E+2' E—Z' E+3r E—3

A, B, E+1' E—lr E+2! E—Z
A' B' E+1' E—lr E+2' E—Z' E+3r E—3
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All that needs to be done is to find the order of the rotation then assign its irreps according to the table
above. Cyclic group irrep symbols are 1 dimensional so 3 x 3 matrices like the those above reduce to
three 1 x 1 irreps i.e. three numbers. Matrices from one equivalence set reduce to irreps

A, E .4, E_;and since the other 10 behave in the same way a total irrep count for the whole molecule
will be 11(4, E,1, E_1) + A. Group theory requires that the irreducible representations of each
equivalence set contain the most symmetrical irrep once and only once so a single atom always has
the most symmetrical irrep. The extension to other cyclic groups is simple and straightforward.

Dihedral symmetry groups

The trisoxalato iron III molecule ion shown below was used to illustrate symmetry operations in
dihedral goups

the trisoxalato iron III molecule ion Fe(C,0,)5

This molecule belongs to symmetry group 3 but also has 2-fold symmetry about the y axis and so
belongs to the higher order dihedral symmetry group D3. Atoms 1,2 and 3 are exchanged by 3-fold
symmetry operations in the same way as in the cyclic example above. A second set of atoms
numbered 4,5 and 6 are also exchanged between themselves during these operations. When this
molecule is considered to have C3 symmetry the matrix representations of these two sets of atoms will



have irreps 2(4,E;1, E_1). The matrix itself P(c) is just two 3 x 3 matrices on the leading diagonal
of a 6 x 6 matrix
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A 2-fold rotation u about the horizontal y axis exchanges the two sets of atoms, creating a new
equivalence set of 6 atoms from the two sets of 3 equivalent atoms with matrix P (u)
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It is worth checking that the matrices multiply out in the same way as the operations

Operation uc = uq so we expect P(u)P(c) = P(uy)

0 001 0 O 0 01 0 0O 0 000 01
/00000 1\/100000\ /000010\
|000010||010000|=|000100|
1 0 0 0 0 O 0 0 00 0 1 0 01 0 0 O
\001000/\000100/ \010000/
010 00O 0 0 00 1O 1 0 0 0 0 O

A quick check of the image above shows that this is transformation 14

6 0 0 00 01 1
5 0 000 1 0}/2
41_10 0 0 1 0 0]]3
3] 100 1 0 0 0|4
2 0 1.0 0 0 0/\5
1 1 0 0 0 0 0/ %6

It is already clear that, when considered as a 3-fold cyclic group, the six equivalent atoms consist of
two sets of 3 equivalent atoms with irreps 2(4 + E.q + E_1). An additional 2-fold rotational
symmetry at right angles to the main axis merges conjugate pairs of E irreps to form a single two-
dimensional representation. At the same time A and B irreps are split into two distinct one-
dimensional irreps with subscripts 1 and 2. These changes produce the collection of the irreducible
representations shown below. The cyclic irreps therefore become A; + A, + 2E; in a dihedral
environment because the most symmetrical irrep A; must occur once and only once so the second
subscript has to be 2.



n  Dihedral irreps n Dihedral irreps
2 A,A;By,B, 3 A, Ay E,

4 Ay, A; By,ByEy 5 A, A EE,

6 Ay,A,,B1,B,y,EE, 7 Ay, Ay EEy Es
8

Al’AZIBll BZIE]JEZ; E3
and so on until
0 Aq,Ay E1,Ey,E3 Ey, .. Ex

Representations for non-rotational group molecules

Non-rotational groups may be derived from rotational groups in two ways: either by combining
rotational operations with mirror reflection or as a direct product of the rotational group with space
inversion (i). These possibilities are shown in the table of Laue classes below with rotational group
G on the left semi-direct product groups G in the middle and direct product groups Gi on the right.
One row of the table contains the groups of one Laue class

Point groups in 3-dimensional space

Partition System G G Gi
Triclinic 1 i
Asymmetric  Monoclinic 2 2 2i
Orthogonal 22 22 22i
Trigonal 3 3i
Symmetric 32 32 32i
Tetragonal 4 4 4
42 42 42 42i
Pentagonal 5 52
52 52 52i
Hexagonal 6 6 6i
62 62 62 621
Heptagonal 7 7i
72 72 72i
Octagonal 8 8 8i
82 82 82 82i
Infinite o0 oof
®2 002 002i
Tetrahedral 23 23i
Spherical Octahedral 432 432 432i
Icosahedral 532 532i

Point groups in a Laue class, other than the centrosymmetric group, are distinct manifestations of a
single abstract group and, since irreps are characteristic of the abstract group rather than the individual
point group, they all have the same irreducible representations and these are shown in the cyclic and
dihedral irrep tables above. The centrosymmetric group is the direct product of any other member of



a Laue class with a 2-fold cyclic group representing space inversion. Its irreps are also direct
products of the class irreps, producing two sets of irreps distinguished by g and u subscripts.

Take the ammonia molecule with point group symmetry 32 as an example. This group belongs to the
3-fold dihedral Laue class and has the irreps for this group shown above. In point group 32 the
three equivalent hydrogen atoms have irreps 4, E, 1, E_;and the nitrogen atom contributes irrep A.
Upgrading this to the dihedral class gives irreps A; + E; for the hydrogen atoms and A, for the
nitrogen atom so the irrep total for the molecule is 24, + E;

Staggered ethane belongs to point group 32i of order 12 and is the centrosymmetric group of the
3-fold dihedral Laue class. It has two sets of three hydrogen atoms attached to two carbon
atoms that can be imagined to be placed in the z axis. When considered as a cyclic molecule
the two sets of three equivalent hydrogen atoms contribute irreps 2(4, E 1, E_;) and the carbon
atoms contribute 24 because they are isolated atoms and both have the most symmetric irrep.
Looking at this molecule as a dihedral point group, the two sets of hydrogen atoms merge to
become a single set of six equivalent atoms with irreps A, + A, + 2E;, following the reasoning
in the example above. The two isolated carbon atoms become two equivalent atoms in the
dihedral group because they can rotate to exchange position and their irreps in this group
become A; + A,. Finally, the dihedral irreps acquire g and u subscripts and a simple rule helps this
process: if an atom is positioned at the centre of symmetry it contributes the most symmetrical irrep of
the group otherwise there must be an equal number of g and u subscripts for each equivalence set.

So, starting with irreps A; + A, + 2E;we have to add subscript g to the A irrep to obtain the most
symmetric irrep and, in order to then keep the numbers of subscripts equal we obtain A;4 + Ay, +
Eig + E1y. Similarly, the carbon atom irreps become A4 + Ay, and the total for the molecule
becomes

2414 + 245y + Eyy + Epy,

This completes one example for each of the 3-fold dihedral Laue class groups. Irreps can always
be deduced by inspection and the laborious us of the “Great Orthogonality Theorem” is
completely unnecessary simply to find irreps.



