
Rotational point groups 

 

A molecule that appears unchanged following a rotation about an axis through itself is said to have 

rotational symmetry.   Most small molecules have both rotational and non-rotational symmetry but the 

triphenyl phosphine molecule pictured below is an example of a molecule that has just 3-fold 

rotational symmetry about one axis with no other symmetry elements present. 

 
Triphenyl phosphine 

If the molecule such as triphenyl phosphine is rotated by 120 degrees in a clockwise rotation it falls 

into coincidence with itself and appears unchanged.   Rotations of 240 and 360 degree also leave the 

molecule looking as though it has not moved.   The image above was taken from the Otterbein site 

where it is possible to move the molecular model on the screen and mimic the symmetry elements.   

Transformations like this are called symmetry operations and are used to describe molecular shapes in 

mathematical form.   The smallest rotation of 120 is called the generator given the symbol c so that so 

that higher order rotations can be shown as cc = c2 and ccc = c3 = 𝐸.   This last symbol, 𝐸, is very 

important because it represents a return to the starting point or, equivalently, not moving the molecule 

at all.   We have therefore a set of 3 symmetry operations {𝐸, c, c2}.   It is useful to know the results 

of compositions of symmetry operations when one is followed by another.   If, for example, symmetry 

operation c2 is followed by symmetry operation c and then followed by symmetry operation c2 we 

could write this as c2 c c2 reading the operations from right to left.   This composition of operations is 

equal to c5 which in this 3-fold example is equal to c2.  A table of the various possible combinations is 

shown below 

Cyclic 3-fold 

 𝐸 𝑐 𝑐2 

𝐸 𝐸 𝑐 𝑐2 

𝑐 𝑐 𝑐2 𝐸 

𝑐2 𝑐2 𝐸 𝑐 
 

Two operations may be combined by looking up the first one in the top row of operations and the 

second on in the first column of operations then reading the result form the intersection of the two 

operations.   It is not difficult to imagine molecules with higher orders of this simple form of cyclic 

symmetry resulting from the repeated application of a single generator resulting in increasingly large 

sets of symmetry  



3-fold {𝐸, c, c2}  c = 120° 

4-fold {𝐸, c, c2, c3}  c = 90° 

5-fold {𝐸, c, c2, c3, c4}  c = 72° 

………. 

∞-fold {𝐸, c, c2, …., c∞} c = infinitely small 

Mathematically, molecular symmetry operations are a set of elements that can be combined with a 

composition operation called “followed by”.   A set of elements with a binary operation is a 

mathematical group if the elements of the set and their binary operation obey the three group 

requirements: 

1. There is an identity element which in combination with any other element simply 

reproduces that element.   The “do nothing” or full rotation symmetry operation provides 

this element 

𝐸𝑋 = 𝑋𝐸 = 𝑋 

2.   Every element must have an inverse 

𝑋𝑌 = 𝑌𝑋 = 𝐸 
 

3.  Combinations of elements must be associative.   This means that the different 

combinations of operations should produce the same result. 

(𝑋𝑌)𝑍 = 𝑋(𝑌𝑍) 

Combinations of sets of symmetry operations always obey the group conditions and are usually called 

point groups because they always move around a central point.   Cyclic groups can be labelled simply 

by their order so that the 5-fold symmetry group is described as point group 5, a practice adopted by 

the international crystallographic community.   Point groups are said to be commutative if the order in 

which their elements are combined has no effect on the outcome: 𝑋𝑌 = 𝑌𝑋.   All cyclic point groups 

are commutative because the order in which two rotations are applied makes no difference to the 

outcome. 

A cyclic 3-fold molecule like triphenyl phosphine has eleven sets of three equivalent atoms that are 

exchanged during transformation operations.   In this example the molecule has sets of 3 three 

equivalent atoms that move into equivalent positions during rotations and a central atom that stays in 

place during each of the operations.   A molecule with simple rotational symmetry might have any 

number of atoms positioned on the axis of rotation but these atoms are only mapped onto themselves 

during cyclic symmetry operations. 

Looking at just one of these equivalence sets, say the carbon atoms nearest to the phosphorus atom, 

and imagining them to be numbered 1, 2 and 3 as in the image above, applications of the 3-fold 

generator operation redistribute the three atoms as follows 

(
1
2
3
) 

𝑐
→ (

3
1
2
)  

𝑐
→ (

2
3
1
)  

𝑐
→ (

1
2
3
) 

Initially the atoms are ordered by their positions but symmetry operations move numbered atoms to 

new positions until they return to their original setting.   Two applications of the generator can be 

shown as a single operation 



(
1
2
3
) 
𝑐2

→  (
2
3
1
) 

There is nothing special about the three carbon atoms numbered in the diagram above and any three 

could have been chosen for the illustration.   This molecule has six sets of 3 equivalent carbon atoms, 

five sets of 3 equivalent hydrogen atoms and single phosphorus atom positioned on the rotational axis.    

 

Dihedral point groups 

Cyclic rotational groups are an important basis for all other symmetry groups both rotational and non-

rotational.   This the illustrated by the trisoxalato iron III molecule ion shown below. 

 
the trisoxalato iron III molecule ion 𝐹𝑒(𝐶2𝑂4)3 

This molecule has 3-fold symmetry about an imagined z axis and therefore belongs to symmetry 

group 3.   It also has 2-fold symmetry about the y axis and so belongs to a higher order dihedral 

symmetry group 32 with six symmetry operations.   In addition to the cyclic generator c already 

described there is now a generator 𝑢 representing a 2-fold rotation about the y axis and these two 

operations can generate all six group operations of the group.  Apart from the central iron atom this 

structure contains six equivalent carbon atoms and two separate sets of six equivalent oxygen atoms.    

Symmetry operations in group 32 exchange all the atoms of one set of oxygen atoms with each other 

but not with the other set of oxygen atoms.   Clearly, the number of equivalent atoms can never be 

greater than the order of the molecule.   The notation adopted here is again similar to that used in 

crystallography.   The first number, in this case 3, represents the order of rotational symmetry about 

the z axis and the second number, in this case 2, represents the order of rotational symmetry about the 

y axis.   This means that all rotational dihedral point groups can be described by the symbol 𝑛2 where 

𝑛 is the main axial order.   

In all dihedral groups except 22 the order in which the two generator operations are applied produces 

a different symmetry transformation because the operations of dihedral groups are not commutative.   

Operation 𝑢  is defined as a 2-fold rotation about the y axis so that rotation 𝑐 followed by 𝑢 produces 

the result 𝑢𝑐 = 𝑢1 and 𝑐2 followed by 𝑢 produces 𝑢𝑐2 = 𝑢1.   This can be seen in the table below 

when the first operation is read from the top row of the table and the second operation is read from the 

left-hand side column.   It is clear from the table that 𝑢𝑐 =  𝑢1 but 𝑐𝑢 =  𝑢2 so the order of 

application is critical. 

 



3-fold dihedral operation table 

32 𝐸 𝑐 𝑐2 𝑢 𝑢1 𝑢2 

𝐸 𝐸 𝑐 𝑐2 𝑢 𝑢1 𝑢2 

𝑐 𝑐 𝑐2 𝐸 𝑢2 𝑢 𝑢1 

𝑐2 𝑐2 𝐸 𝑐 𝑢1 𝑢2 𝑢 

𝑢 𝑢 𝑢1 𝑢2 𝐸 c 𝑐2 

𝑢1 𝑢1 𝑢2 𝑢 𝑐2 𝐸 c 

𝑢2 𝑢2 𝑢 𝑢1 c 𝑐2 𝐸 

 

Each of the six carbon atoms in the diagram above is numbered so that their movements during 

symmetry operations can be followed.   Carbon atoms 1,2 and 3 are exchanged between themselves 

by the 3-fold cyclic rotation , forming a set of three equivalent atoms   Those numbered 4,5 and 6 

form a separate equivalent set as shown in the position vector diagram below 

(

  
 

1
2
3
4
5
6)

  
 𝑐
→ 

(

  
 

3
1
2
6
4
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 𝑐
→ 

(
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3
1
5
6
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 𝑐
→ 

(

  
 

1
2
3
4
5
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An application of the  𝑢 operation exchanges atoms of the two sets of three equivalent atoms, creating 

a set of six equivalent atoms that are exchanged as follows 

(

  
 

1
2
3
4
5
6)

  
 𝑢
→ 

(

  
 

4
6
5
1
3
2)

  
 𝑢
→

(

  
 

1
2
3
4
5
6)

  
 

 

Combinations of the c and u generators applied to the molecule produce all six possible exchanges of 

the six atoms. 

Spherical point groups 

 

Spherical point groups include tetrahedral and octahedral rotational groups 23 and 432 of order 12 and 

24 that are related in a similar way to the cyclic and dihedral groups in that one forms an index-2 

subgroup of the other.   These two are often called cubic groups because they are often shown 

inscribed in a cube.   There is also an icosahedral rotational group 532 that has only limited 

application in molecular chemistry.   It can be very difficult to find small molecules that have only 

rotational symmetry but it is possible to examine the rotational subgroup while simply ignoring the 

non-rotational elements of the larger group.   Spherical group symbols, like their dihedral 

counterparts, show the main axis of rotation about the z axis in the first position then rotations about 

other axes in the second and third positions.   Tetrahedral group 23 has 2-fold symmetry about the z 

axis and 3-fold symmetry about a line joining the apex of a cube to the centre of the molecule. 

Methane belongs to the rotational tetrahedral group 23 of order 12 although it also belongs to a higher 

order non-rotational group 432 of order 24.   All nonrotational groups have a rotational group of half 

the order of the larger group and it is always advantageous to deal first with the rational group because 

this limits the possible non-rotational groups and properties.   A brief look at the diagram below shows 



that there are four 3-fold axes through the apices of the cube and three 2-fold axes about the mid-point 

of each pair of faces.    

 

Methane inscribed in a cube 

Consider for the moment just the rotational transformations of the molecule inscribed in a cube as 

shown above.   Rotations of 180° degrees about each of the 𝑥, 𝑦 and 𝑧 axes bring the molecule into 

coincidence with itself and these operations, together with the identity operation, mean that it belongs 

to point group 22 of order 4.   These operations are {𝐸, 𝑐, 𝑐𝑥, 𝑐𝑦}.   Four distinct 3-fold symmetry axes 

running between opposite corners of the cube are equally obvious in the figure and these operations 

may be labeled {𝐸, 𝑏, 𝑏2}.   As a result tetrahedral point group 23 is a combination of the 2-fold 

dihedral group and the 3-fold cyclic group, producing a group of order 12:  the identity element, three 

2-fold rotations about 𝑥, 𝑦 and 𝑧 axes and eight 3-fold rotations about axes between apices of the cube 

Octahedral molecules also appear inscribed in cubes but might have atoms positioned at the midpoints 

of each face as in the following example 

 

An octahedral molecule inscribed in a cube 

An octahedral molecule has the 12 symmetry operations of a tetrahedral molecule described above 

together with twelve further operations not found in the tetrahedral case: six 4-fold rotations about the 

x, y and z axes plus six 2-fold rotations about lines bisecting the axes.   Together these are the 24 

symmetry operations of rotational group 432.   Generator c is now a clockwise rotation of 90° that 

also produces multiples of 180° and 270° as opposed to the tetrahedral case where it is a 180° 

rotation.   Also present are the 3-fold rotations produced by generator 𝑏 about the same four axes as in 

the tetrahedral group and these can be used in transforms to produce 4-fold rotations about the other 

two axes.   These 3-fold rotations are exactly those of the tetrahedral group.   In addition to the 3 and 

4-fold axes there are three 2-fold axes bisecting opposite diagonals. 

 



Rotational groups in Laue classes 

Crystallographers define Laue classes by the centrosymmetric group on the right-hand side of the 

Laue class table because X-ray diffraction inserts a centre of symmetry into non-centred point groups.   

In molecular work the rotational group on the left-hand side is more useful because it has the same 

abstract structure as other members of the Laue class except the centrosymmetric group which is a 

direct product of the rotational group and the inversion operation. 


