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Abstract. This paper describes an approach to the de-
duction and labeling of crystallographic point groups in n-
dimensional spaces where n is an odd number. It shows
that point groups in such spaces may be formed from the
generators of rotational groups and a single inversion op-
eration characteristic of the odd dimension. Results are
given for 188 of the 955 crystallographic point groups in
a five dimensional space and the extension to the remain-
der of the groups is made clear. Since 3 is an odd number,
the 32 classical point groups are used to illustrate the use
of generators for this purpose. Further extensions to seven
dimensions and to even dimensions are then discussed.

Introduction

W. Plesken [1] showed that there are 955 Q classes of
crystallographic point groups distributed among 32 fa-
milies in a five dimensional space. J. Opgenorth, W. Ples-
ken and T. Schulz [2] later explained in detail a computer
package (CARAT) capable of enumerating O, Z and affine
classes to 6 dimensions. A summary of the results is con-
tained in W. Plesken and T. Schulz [3]. R. Veysseyre, D.
Weigel, Th. Phan and H. Vesseyre [4] provided an alterna-
tive geometrical derivation and an extended form of the
Hermann-Mauguin notation to label 5D groups. This work
was further developed in R. Veysseyre, D. Weigel and Th.
Phan [5] and in D. Weigel, Th. Phan and R. Vesseyre [6]
so that it covers most 5D point groups. D. Weigel, Th.
Phan and R. Vesseyre [7] had previously produced geo-
metric symbols for 4D point groups following earlier work
defining those groups by H. Brown, R. Biilow, J. Neubii-
ser, H. Wondratsheck and H. Zassenhaus [8]. The variety
of extended Hermann-Mauguin notations prompted an at-
tempt to standardize such notations in T. Janssen, J. L.
Birman, V. A. Koptsik, M. Senechal, D. Weigel, A. Yama-
moto, S. C. Abrahams and T. Hahn [9] and the work of
Weigel, Phan and Vesseyre, called WPV notation, largely
complies with these standards.

The treatment below describes a quite different ap-
proach to finding and denoting point groups in nD spaces
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where n is an odd number, exploiting a particular property
of such spaces. Given the rotational groups in a suitable
notation, all non-rotational groups may be derived by a
systematic search for index-2 subgroups. Computer pro-
grams to extract such subgroups are easily written and
may be of help for larger groups but most of the examples
below are obvious from manual inspection. The familiar
three dimensional groups are used to illustrate the method
and then the technique is applied to deduce and denote
188 crystallographic point groups in the two lowest parti-
tions of 5D space. Point groups in even-dimensional
spaces may be labeled as polar groups of the next highest
odd dimensional space.

Each transformation generator or point group in an n-
dimensional space belongs to a partition derived from its
standard reduction in representation theory. Distinct parti-
tions are denoted by square bracketed combinations of or-
dinals with a sum of n, producing the result shown Table 1.

It is convenient to describe partitions as lower or higher
according to the numbers they contain, so that [n] is always
the highest partition in an n dimensional space and [1, 1, 1]
is the lowest. They may then be arranged in a hierarchy
such that point groups in one partition can only have sub-
groups in the same or lower partitions. For example, point
groups in [2, 1, 1, 1] might have subgroups in that partition
orin the [1, 1, 1, 1, 1] partition, but in no other.

Generators

Geometrical point groups may be constructed from a lim-
ited number of transformation generators that arise with
increasing dimensional spaces. These generators are de-
scribed as positive or negative according to the signs of
their determinants and groups containing only positive
transformations are called positive or rotational groups.

Table 1. Allowed partitions in increasing dimensions.

Dimension  Partitions

(1]

(1, 11, 2]

[1, 1, 11, [2, 1], [3]

[1, 1,1, 11, [2, 1, 11, [2, 2], [3, 1], [4]

[1, 1,1, 1, 1], [2, 1, 1, 1], [2, 2, 1], [3, 1, 1], [3, 2],
[4, 11, [5]

[ o S
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A one dimensional space permits only one partition [1]
that allows only one positive transformation, the identity
operation and one other operation of order 2 that inverts
points on the single axis. This is the familiar mirror inver-
sion operation usually labeled m and is the only non-trivial
generator in one-dimensional space. Four new rotational
generators arise on moving to two dimensions, these being
transformation 2 in the [1, 1] partition and transformations
3, 4 and 6 in the [2] partition. Each of these transformations
is described by the following generic 2 x 2 matrix

cos@ —sinf
sinf cosf )
No further rotational generators arise on moving from 2 to

3 dimensions so rotations in this space are summarized by
the following 3 x 3 matrix

cos® —sinf O
sinf@ cosf@ O
0 0 1

One new generator does arise in three dimensions: the ne-
gative parity inversion operation usually labeled i. Each of
the five generators inherited from two dimensions may be
multiplied by parity inversion to produce a set of
10 generators. The resulting operations are used to con-
struct the familiar 32 crystallographic point groups.

Four dimensional space permits two rotations in a single
transformation. One rotation may be imagined to take place
in the xy plane while the other occurs simultaneously in the
zt plane, assuming that axes in higher spaces are labeled x,
¥, Z, t, u etc. Such transformations are denoted by the gen-
erator symbol nm and extend over the 19 generators shown
in Table 2. This table includes four generators {n} that gen-
erate cyclic groups of order 5, 8, 10 and 12 and are of inter-
est only in point groups of the [4] partition. Each generator
shown in Table 2 is capable of producing all of the elements
of a cyclic group of order equal to the lowest common mul-
tiple of the two rotations.

No new rotational transformations arise on passing
from four to five dimensions and the generators of Table 2
apply equally in 5D. Double rotations in 5D may be de-
scribed by a 5 x 5 matrix as follows

cos —sinf 0 0 0
sinf cos @ 0 0 0
0 0 cosgp —sing 0
0 0 sing cosep O
0 0 0 0 1

The only new generator that does arise in 5D is a negative
inversion operation which, in the following text, is called
the penta-inversion and given the symbol j. Each of the 19

Table 2. Rotational generators in four and five dimensions.

1
2 22 (5}
3 32 33 (8}
4 42 43 44 {10}
6 62 63 64 66 (12}

positive generators may be combined with this operation to
provide a total of 38 generators in five dimensions. Negative
generator operations are represented by an overbar symbol
above the positive generator in all odd dimensional spaces.
Distinct and different symbols could be used, but in this
article the meaning is obvious from the context. Generators
in the first two columns of Table 2, belonging to the [1, 1, 1,
1, 1] and [2, 1, 1, 1] partitions, are used in the paper. The
six remaining double rotations could not occur in a point
group belonging to a partition lower than [2, 2, 1].

An alternating pattern is clear in the above listing of
generators. With increasing n an nD space gains new rota-
tions when n increases to an even number and gains a
new inversion operator when n increases to an odd num-
ber. New inversions are always in the lowest partitions:
[11, [1, 1, 1], [1, 1, 1, 1, 1] and so forth. Symbols m and i
are widely accepted for inversions in one and three dimen-
sions and may be followed by j, k and [ for five, seven
and nine dimensions. Higher inversions may be described
as penta-inversion, hepta inversion and so forth. Multipli-
cation by an inversion or the inclusion of an inversion in a
group does not alter the partition of the generator or group
because it is simply a negated identity matrix.

Point groups in n dimensions

Orthogonal groups in n dimensions may be formed from a
union of special orthogonal groups as follows

O(n) = SO(n) U BSO(n),

in which matrix § has determinant —1 (R.L.E. Schwar-
zenberger [10]). However, in an n-dimensional space
where n is an odd number a more restrictive definition is
possible and in this case we may write

O(n) = SO(n) U1SO(n).

The symbol 1 in this equation represents an inversion in n
axes. Finite groups in such situations are formed in one of
two ways. In the first case a non-rotational group G’ is
related to a rotational group G and its index-2 subgroup H
as follows

G =HUI1(G-H).

G’ thus consists of the set of elements in subgroup H to-
gether with those elements of G not contained in A multi-
plied by the inversion operation. It is a combination of an
invariant subgroup of rotations with a coset of negative
transformations. The inversion operation itself does not oc-
cur in groups of this kind. Groups G and G’ are distinct
representations of the same abstract group and, since group
G may have more than one index-2 subgroup, a rotational
group G might have multiple isomorphs of this kind. The
inversion operation commutes with all other operations,
thus preserving the product structure of the rotational group.
An index-2 subgroup implies an invariant subgroup and the
existence of an isomorphic non-rotational group.

Non-rotational groups may also be formed as the direct
product of a rotational group G and the inversion opera-
tion as follows

G'=GUI1G.
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In this case group G is retained as an index-2 subgroup to-
gether with all its inversion products including the inversion
operation itself. Obviously the order of G” is twice that of G.
In summary it is clear that every rotational group de-
fines a set of groups that contains
e one rotational group
e zero or more non-rotational groups isomorphic to the
rotational group
e one direct product of the rotational group and an
inversion
Collections of this kind are called Laue sets in three
dimensions but the concept is equally applicable in any n-
dimensional space where n is odd and is applied to the
five dimension case below.

Point groups in 3 dimensions

A suitable choice of basis functions may be used to trans-
form an individual matrix into a partition but it does not
follow that the same functions transform every element of a
point group into that partition. Although generators in three
dimensions belong only to the [1, 1, 1] and [2, 1] partitions
they generate cubic groups in three dimensions belonging to
the [3] partition. For cyclic groups, the partition of the point
group is that of its generating transformation but other situa-
tions are more complex. The three partitions of three dimen-
sions are subdivided into six families but it is convenient to
further divide the crystallographic hexagonal family into se-
parate threefold and sixfold systems. Individual positive
groups then define Laue sets at the finest level of definition.
The five rotational generators of 3D together with parity in-
version are capable of generating all 3D groups and their
matrices may be summarized as follows

cos® —sinf O —1 0 0
n= 1| sinf@ cosf O i= 0 -1 0
0 0 1 0 0 -1

A partition defines a block structure for each group it con-
tains. Partition [3] is defined by 3 x 3 matrices that cannot
be reduced by changing basis functions. Two, three and four-
fold rotational generators combine to form the cubic groups.
All of the generators of these groups operate within the
block and are therefore labeled by numbers, 232 and 432.
Rotations within a block are always labeled with Arabic nu-
merals. On the other hand, groups belonging to partitions [1,
1, 1] and [2, 1] may be represented by matrices partitioned
into a 2 x 2 and single element blocks, even though groups
of the lower partition could be further reduced. It is conveni-
ent to introduce the following “join” matrix u to describe the
one allowed interaction between the blocks

1 0 0
u=10 -1 0
0 0 -1

Rotational point groups in these partitions are either cyclic
or dihedral groups shown as, for example, 4 and 4u. An
Arabic numeral is used for the rotation within the block
while a letter is used for the join between blocks. It is
worth noting that transformations shown as 2 and u both
correspond to the 2 fold generator, the former being used
within a block the latter between blocks.

Table 3. Crystallographic point groups in three dimensions.

Partition System G HUi(G—H) G xi
[1, 1, 1] Triclinic 1 i
Monoclinic 2 2 2i
Orthorhombic 2u 2u 2ui
[2, 1] Trigonal 3 3i
3u 3u 3ui
Tetragonal 4 4 4i
4u 4u 4u 4ui
Hexagonal 6 6 6i
6u 6u 6u 6ui
[3] Cubic 232 232i
432 432 432i

Table 3 shows the 32 crystallographic point groups in
rows of Laue sets and the column of rotation groups la-
beled in this way. The final column of direct product
groups is equally simple, consisting of the products of ro-
tational groups and parity inversion.

Non-rotational isomorphic groups are formed when the
generator of a rotation group is replaced by the product of
that generator and parity inversion. In a sense the genera-
tor is negated and this is indicated by an overbar. Cyclic
groups (n) of even order form isomorphic groups (n) in
this way. Dihedral groups (nu) have two generators and
two distinct isomorphic groups (nu and nu) may appear in
these cases. Cubic groups are more restricted and only one
octahedral isomorph is possible in three dimensions.

Point groups in 5 dimensions

The 19 rotational generators of 5D listed in Table 2 act in
X, Y, z, t and u axes Only the [1, 1, 1, 1, 1] and [2, 1, 1, 1]
partitions are described below and so only the subset of 9
rotational generators shown in Table 4 is required. Combi-
nations of these operations with the penta-inversion gen-
erator (j) are sufficient to generate the 32 and 156 groups
in these two partitions.

All of the rotational generators nm are expressed in the
general matrix form below and substitutions for this ma-
trix together with the penta-inversion (j) are capable of
generating all 5D point groups based on double rotations.

cos —sin6 0 0 0

sinf  cos 6 0 0 0

nm = 0 0 cosp —sing O
0 0 singpg cose O

0 0 0 0 1

Table 4. Positive generators in five dimensions.

Partition generators
[1,1,1,1,1] 1
2 22
[2,1,1,1] 3 32
4 42
6 62
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Rotations 8 and ¢ occur in the xy and z¢ planes and it is
convenient to treat both the [1, 1, 1, 1, 1] and [2, 1, 1, 1]
partitions as if they were [2, 2, 1]. As a result the block
structure for all of these groups consists of two 2 x 2
blocks and a single element. A group may be formed
from two separate rotational generators, one operating
only in the xy plane, the other only in the zz plane. The
resulting group, labeled n.m is a direct product of two
groups operating in disjoint spaces. In effect the dot be-
tween the two numbers is an instruction to drop down
along the diagonal of a matrix by one block. A matrix
product then represents the two operations

cos@ —sinf@ 0 O O

sinf cosf 0 0 O
n.m = 0 0 1 00
0 0 010
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
X0 0O cosp —singp O
0 0O sing cosg O
0 o0 0 0 1

Operation nm has an order equal to the lowest common
multiple of n and m. In some cases groups nm are equiva-
lent to groups n.m, for example, 32 and 3.2 are both of
order 6 and represent the same group.

Only one join is required between the two blocks of
the [2, 1] partition in 3D but three are required in the
[2, 2, 1] partition of 5D. Transformation u is a two-fold
rotation in the y and z axes similar to that described for
3 dimensions. Operation v is a similar transformation in
the ¢ and u axes, joining the two lower blocks. Finally,
b is a double two fold rotation involving y,z,¢ and u
axes equivalent to the simultaneous operation of both u
and v.

1 0 00 0
0 -1 00 0
u=|0 0 -1 0 0],
0 0 010
0 0 00 1
100 0 0
010 0 O
v=(0 01 0o o],
000 -1 0
000 0 —I
1 0 0 0 0
0 -1 0 0 0
b=|0o 0o -1 0 0
0 0 0 -1 0
0 0 0 0 —I

Obviously, these operations are just special cases of trans-
formations 2 and 22. As in three dimensions, numbers are
used when the transformations occur within blocks and

letters when they are between blocks. Only order 2 opera-
tions occur between blocks.

Nineteen non-rotational cyclic group generators may be
formed simply by multiplying each of the positive genera-
tors by the penta-inversion (j).

-1 0 0 0 0
0 -1 0 0 0
j=l 0o 0 -1 0 o0
0 0 0 -1 0
0 0 0 0 -1

Not all of these are of interest here for two reasons.
Firstly, generators in the [1, 1, 1, 1, 1] and [2, 1, 1, 1]
partitions are restricted to negations of positive generators
in Table 4. Additionally, negations of three fold rotations
do not occur because the order of these generators is in-
creased and the resulting group is changed. As a result the
non-rotational generators of use in the first two partitions
are those shown in Table 5. Just as with the rotational gen-
erators, negated joins are special cases of negated two fold
rotations.

There are 32 crystallographic families in five dimen-
sional space and these are easily derived from the families
of lower dimensional spaces. Such derivations are particu-
larly easy in nD spaces where n is an odd number while
they are a more difficult when n is even because new
families arise as a result of new rotational generators.
Combinations of cells from lower dimensions are used to
define new families and to produce a holohedry group re-
presentative for the family. In an odd n dimensional space
these groups must contain n-fold inversion which can be
extracted to leave a representative rotational group for the
family. Subgroups of this group then define Laue sets for
the family.

Point groups in the [1, 1, 1, 1, 1] partition

Given families in lower dimensions, the process of finding
crystallographic families in an odd dimensional space is a
straightforward exercise. As in other dimensions, the low-
est partition contains an unusually large number of fa-
milies and these are listed in Table 6.

Table 6 uses Plesken’s labeling of 5D families together
with WPV names and includes the family holohedry
group. Each of the names shows how that family is con-
structed from cells of lower dimensions, except decaclinic
which only arises in 5D. Extensions of 4D cells to five
dimensions are shown by the -al extension and orthotopic
is the extension of orthorhombic to five dimensions, other-
wise the compound cell is obvious from the name [4].

Table S. Negative generators in 5D.

Partition Generators
[, 1,1, 1,1] i

2,4, v 22,b
[2, 1,1, 1] 4 Vip)

6 62
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Table 6. Families in the [1, 1, 1, 1, 1] partition of 5D.

Table 8. Hexagonal families in the [2, 1, 1, 1] partition.

Family  Name Cells Holohedry Family Name Cells Holohedry

I Decaclinic ] j vl Triclinic hexagon 6m.i 6bj

I Hexaclinic-al 22.m 22j XI (Hexagon oblique)-al 6m.2.m 6uvj

I Triclinic Oblique 2.1 2j XV Hexagon orthorhombic 6m.2m.m  6.2uvj

v Triclinic rectangle 2m.i 22v

\" (Di obliques)-al 2.2.m 2.2j

VII Oblique orthorhombic 2.2m.m 2.2vj the non-rotational isomorphs for each Laue set in this par-
IX Orthotopic 2dm2mm  2.2uvj tition. A list of the index-2 subgroups of each rotational

Cells are shown in 1, 2 and 3D generator notation (except
for Decaclinic) so a rectangle is shown as 2m rather than
2mm and orthorhombic is shown as 2m.m rather than as a
three dimensional cell. Holohedry groups are often con-
structed in much the same way as the name so, for exam-
ple, triclinic oblique may be described by the following
matrices

-1 0 0 0O
0 -1 0 0 O
2= 0O 01 0 0],
0 0 0 1 0
0 0 0 0 1
1 0 0 0 O
0 1 o o0 O
i=|0 0 -1 0 O
00 0 -1 0

00 0 0 -1

When n is an odd number all nD holohedry groups are
direct products of a rotation group and the inversion op-
eration for that dimension so that the triclinic oblique ho-
lohedry might equally well be described by transforma-
tions 2 and j. In this way an index-2 rotational group is
extracted from every holohedry group. Since holohedry
groups contain all other family point groups as subgroups
their rotational groups must contain the corresponding ro-
tational subgroups. This partition is unusual in that only
two rotational subgroups in families VIII and IX arise in
this way and these two are included in Table 7. Each one
defines a Laue set containing non-rotational isomorphic
groups and direct product group with the penta-inversion.
Given the rotational groups one can very quickly work out

Table 7. Point groups in the [1, 1, 1, 1, 1] partition.

group identifies all such groups. In most cases the result-
ing group may be labeled by negating a single generator,
shown by an overbar. In other cases it is necessary to ex-
tend the bar over two generators, for example where 2.2
has index-2 subgroup 22. Direct product groups simply
add a j to the rotational group symbol.

Hexagonal groups in the [2, 1, 1, 1] partition

Three hexagonal families in [2,1,1,1] may be con-
structed from cells of lower dimension and are listed in
Table 8 with equivalent holohedry groups in generator no-
tation.

Removal of the penta-inversion reveals rotational
groups 6b, 6uv and 6.2uv that have to be searched for
subgroups. As in the three dimensional case it is conveni-
ent to separate groups based on 6 fold rotations from their
index-2 subgroups 3b, 3uv and 3.2uv based on 3 fold rota-
tions. Starting with these three trigonal rotational groups, a
search for rotational subgroups proceeds quickly because a
three-fold rotation must remain in any such subgroup and
the process reduces to finding subgroups of the two-fold
rotations. Having found the rotational groups shown in
Table 9, most of the information necessary to construct the
non-rotational isomorphic groups has already been found.
For example, 3uv has index-2 subgroups 3.2, 3u and 3b
and therefore three isomorphic groups. Notice that the in-
dex-2 subgroup does not have to be in the same family or
even in the same partition. Direct product groups with
penta-inversion just take an additional j generator.

Groups 6b, 6uv and 6.2uv produce a larger number of
rotational subgroups because the main rotor itself has an
index-2 subgroup. Even so, the procedure remains un-
changed and produces the 13 groups shown in Table 10. A
systematic search for the index-2 subgroups of each of the
13 rotational groups then reveals the non-rotational iso-
morphs also shown in Table 10. Most of these can be

Table 9. Trigonal point groups in the [2, 1, 1, 1] partition.

Family G Non-rotational isomorphs G Xxj

I 1 j

11 2 2 2j

I 22 22 22j

v 22v 22v 22v 22vj

\Y 22 22 22 2.2j

VIII 2u 2u 2uj
2.2v 2.2v 2.2v 2.2v 2.2vj

IX 2.2u 2.2u 2.2u 2.2uj
2.2uv 2.2uv 2.2uv 2.2uvj

Family G Non-rotational isomorphs G Xj
VII 3 3j
3b 3b 3bj
XI 3u 3u 3uj
32 3.2 3.2j
3uv 3uv 3uv 3uv 3uvj
XV 3.2u 3.2u 3.2a 3.2uj
3.2v 3.2v 3.2vj
32uv  32uv 3.2av 3.2uv 3.2uvj
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Table 10. Hexagonal point groups in the [2, 1, 1, 1] partition. Table 12. Tetragonal point groups in the [2, 1, 1, 1] partition.
Family G Non-rotational isomorphs G Xj Family G Non-rotational isomorphs G xj
VIl 6 6 6j VI 4 4 4
6b 6b 6b 6bj 4b 4b 4b 4bj
XI 62 62 62j X 42 42 42j
62b 62b 62b 62b 62bj 42b 42b 42b 42b 42bj
6u 6u 6 6uj 4u 4u 4u 4uj
6.2 6.2 6.2 6.2 6.2j 4.2 42 42 42 4.2j
6uv 6uv 6uv 6uv 6uvj 4uv duv 4uv 4uv 4uvj
6uv 6uv duv duy
XV 62u 62u 62u 62uj X1V 42u 42u 42u 42uj
62v 62v 62v 62vj 42v 42v 42v 42vj
62uv  62uv 62uv 62uv 62uvj 42uv 42uv 42uv 42uv 42uvj
620v 62uv 420y 2uy
6.2u 6.2u 6.2u 6.2u 6.2uj 4.2u 4.2u 4.2u 4.2u 4.2uvj
6.2 4.2u
6.2v 6.2v 6.2v 6.2v 6.2vj 4.2v 4.2y 4.2v 4.2y 4.2vj
6.2uv  6.2uv 6.2uv 6.2uv 6.2uvj 4.2uv 4.2uv 4.2uv 4.2uv 4.2uvj
6.2uv 6.2uv 4.2uv 4.2uv

shown by negating one generator of the positive group
symbols but again, in a few cases, two generators are ne-
gated to indicate a subgroup. Fortunately, a computer pro-
gram to detect index-2 subgroups is easily produced and
each possibility corresponds to a distinct isomorphic
group. Direct products are again formed from rotation
groups and the penta-inversion.

Trigonal point groups have the form shown in Table 9
because the main rotor is an odd number that cannot itself
have an index-2 sub-rotation. Other odd numbered rotors
produce similar tables, allowing the production of (non-
crystallographic) pentagonal and heptagonal tables from
the trigonal one. For similar reasons even numbered rotors
have tables similar to Table 10 and so the tetragonal
groups described below follow a pattern set by the hexa-
gonal groups already described.

Tetragonal groups in the [2, 1, 1, 1] partition

There are three tetragonal families with names and holohe-
dries similar to those of the hexagonal family and these
are shown in Table 11.

Once again 5D holohedry groups are formed from low-
er dimensions and converted into inversion forms 4bj,
4uvj and 4.2uvj. Rotational groups 4b, 4uv and 4.2uv are
extracted and these groups and in turn searched for sub-
groups to provide the 13 rotational groups of Table 12.
Non-rotational isomorphic groups are derived in the same
way as the hexagonal examples described earlier and pro-
duce the strikingly similar results shown in Table 12. This

Table 11. Tetragonal families in the [2, 1, 1, 1] partition.

Family Name Cells Holohedry
VI Triclinic square 4m.i 4bj

XI (Square oblique)-al 4m.2.m 4uvj

XV Square orthorhombic 4m.2m.m 4.2uvj

table is completed by the direct product groups shown by
attaching j to the rotational group.

There are 28 trigonal point groups which, together with
64 for each of the hexagonal six-fold and tetragonal fa-
milies, gives a total of 156 groups for the [2, 1, 1, 1] parti-
tion.

Subgroups of the (Hexagon oblique)-al holohedry
group 6uvj

Point group 6uvj is the holohedry group of the (hexagon
oblique)-al family and so contains every other group in
this family as a subgroup. These groups in turn contain
further subgroups. One way of following this cascade of
subgroups is to first list all the centrosymmetric subgroups
of 6uvj. Each centrosymmetric group must, by definition,
contain all other members of its Laue set as index-2 sub-
groups that can be read from Table 10, but only the num-
ber of these groups is shown in Table 13. In total 6uvj has
71 subgroups (itself included). Group 6uvj of order 48 has
5 index-2 centrosymmetric subgroups listed below itself in
Table 13. Further centrosymmetric subgroups of order 12
and 6 follow in the same column. Point group 6uvj also
has an index-3 subgroup 2uvj of order 16 which in turn
has further index-2 centrosymmetric groups culminating in
the inversion operation itself. The table shows 19 such
groups. The number corresponding groups that can be
read from Table 10 in this way is shown in the third col-
umn of Table 13, producing a total of 52 groups.

Five dimensional space allows also the partitions
2,2,1], [3,1, 1], [3, 2], [4, 1] and [5] and work on these
is progressing in the same order. Partition [2, 2, 1] is treat-
ed in much the same way as the partitions described
above except that the order in which rotations are labeled
becomes important so, for example rotations 6.3 and
3.6 may be used within the context of joins. In fact, the
examples above have been treated as though partitioned in
[2, 2, 1]. Partitions containing cubic sub-groups occur as
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Table 13. Subgroups of 6uvy.

Order Laue set No in set
48 6uvj 6
24 3uvj 4
6.2j 4
6uj 3
6bj 3
62bj 4
12 62j 2
3uj 2
3.2j 2
6j 2
3bj 2
6 3j 1
16 2uvj 4
8 2.2j 3
22vj 3
2uj 2
4 2j 2
22j 2
2 j 1
Totals 19 52

[3,1,1] and [3,2] and have to be treated in terms of
3 x 3 and 2 x 2 blocks with a join between the z and ¢
axes. Point groups in the [3, 2] partition have a block
structure of 3 x 3 and 2 x 2 blocks that might contain, for
example, 432 and 6 groups together with a join between
the blocks. However, the principle of the approach is not
altered Again the procedure is to find rotational groups
then to use index-2 subgroups to discover isomorphic non-
rotational groups. Direct product groups are deduced in
the same way. The approach advocated above follows
from the algebra of transformations in nD when n is an
odd number and obtains in any partition. Clearly, this
method applies only to nD when n is odd but all point
groups in an even dimensional space are polar in the next
highest dimensional space. It follows that they can be gen-
erated and labeled in this way and then collapsed into the
lower space. Enumerating the 137 crystallographic fa-
milies of 7D from those of lower dimensions is a straight-
forward process and produces holohedry groups from
which Laue sets can be derived. Subgroups of these then
produce other rotational and non-rotational groups. As the
number and order of the groups increases there is a corre-
sponding need for efficient computer programs. Fortu-
nately the similarities between abstract algebraic structures
(abstract types) and functional programming languages
noted in M. Downward [11] allow structures to be mod-
elled in the functional style. This may be done directly in
the language or through a computational group theory
package such as GAP.

Magnetic point groups

H. Heesch [12] described 122 three dimensional magnetic
point groups in terms of 3 spatial axes and a spin axis,

producing reducible 4D representations. More recently, B.
Souvignier [13] counted 1025 four dimensional magnetic
point groups in reducible 5D representations, 4 spatial one
1 spin. Magnetic point groups are subdivided into white,
proper magnetic and grey groups in much the same way
as the groups described above are divided into rotational,
non-rotational isomorphic and centrosymmetric groups.
This similarity arises because the spin inversion operation
and the spatial inversion operations act in the same way in
the defining equations so that in both cases groups are
found by searching for index-2 subgroups. White groups
G are simply the spatial groups of the appropriate dimen-
sion so, for example, there are 227 4D white groups. A
proper magnetic group G’ is related to a spatial group G
and its index-2 subgroup H as follows

G =HUm(G—-H)
Groups G and H may be non-rotational and the inversion
operation m is that of spin inversion. Group 42 in 4D has one

index-2 subgroup and forms a proper magnetic group of or-
der 4 from the single reducible 5D generator 42 shown below

1 000 O

01 00 O
m=[0 01 0 0],

0 0 0 1 0

0 0 0 0 -1

0 -1 0O 0 O

1 0O o0 0 0
2=10 0 -1 0 0

0O 0 0 -1 0

0O 0 0 0 -1

Magnetic generators of this kind are simpler than their
spatial counterparts. In the above example a spin inversion
is added to the 42 matrix while in the spatial case a penta-
inversion changes all matrix entries. There are 571 4D
proper magnetic groups. Finally. there are 227 grey groups
G” analogous to the centrosymmetric spatial groups

G'"=GUmG.

Comparisons between the 1025 4D magnetic point groups
and the 955 5D spatial point groups are not as simple as
the defining formulae might suggest. Index-2 subgroups
are required for all 4D groups to form magnetic groups
while only those of rotational groups are required to form
5D spatial groups. A spin inversion axis is distinct and
rotations into it from spatial axes could not occur while an
added spatial axis is indistinguishable and permits such
transformations. Magnetic point groups may be formed in
any dimension while the spatial groups described earlier
are only possible in nD where n is odd.
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