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Symmetry and representation in a three dimensional
space

Michael Downward1

� Springer Science+Business Media Dordrecht 2015

Abstract Schoenflies point groups are presented in terms of spatial partitions and Laue

classes based on abstract groups. A much simpler system using only a minimal set of

generators for three dimensional groups is then presented in the same form. This simplified

treatment allows group operations of a given Laue class to be correlated to a greatly

simplified Mulliken-style notation for irreducible representations of that class. Transfor-

mation matrix representations of point groups in the simplified style can then be ma-

nipulated according to their position in the class or to their sub-groups in very clear

procedures. Simple rules can replace the large numbers of tables necessary in the

Schoenflies approach. Some applications of the method are described.

Keywords Point groups � Irreducible representations �Matrix reduction � Direct product �
Correlation

Introduction

Crystallographic symmetry was fully described in terms of point and space groups in the late

nineteenth century following the work of Schoenflies and Federov (Schoenflies 1892; Fed-

erov 1891). This treatment preceded the discovery of X-ray diffraction but was later extended

to include a fuller treatment of atomic positions in crystalline cells (Schoenflies 1923).

Although described in terms of group theory it is important to note that this early work was

essentially geometric in its reasoning and, while using group algebra, did not see abstract

algebraic structures as a unifying feature. Schoenflies labeled point groups with an ad-hoc

collection of geometrical operations then simply numbered space groups corresponding to

each of these point groups. C. Hermann and H. Mauguin later developed an approach that

incorporated translational operations into a space group notation that became an international
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standard for crystallography. (Hermann 1928; Mauguin 1931). Published work in atomic and

molecular structure continued to use a version of the Schoenflies approach augmented to

include non-crystallographic rotations because most of the advantages of the International

System are limited to descriptions of crystallographic space groups. Typically, point group

symmetry is applied to atomic and molecular quantum mechanical problems in order to

clarify or simplify computation by reducing representations of groups to their irreducible

representations (irreps). (Mulliken 1955). Mulliken notation is derived from a geometrical

point group system intended to describe the external morphology of crystals and can only be

adapted for atomic use with the aid of large numbers of tables. This complex and convoluted

approach not only makes it very difficult to understand the subject but also guarantees

mistakes. For example, R.B. Shirts noted that mistakes in group theory tables have been

propagated through the literature for periods of 50 years. (Shirts 2007). This article describes

point groups in 3D space in terms of the abstract groups to which they belong and presents

much simpler, more intuitive notations that facilitate computation. It shows that using the

irrep symbols of the defining abstract group in a Laue class for all members of the class allows

simple deductions to be made from the point group generator symbols.

Geometrical point groups in an n-dimensional space belong to partitions labeled by a

bracketed set of positive integers with sum n so a 3 dimensional space admits partitions

[1,1,1], [2,1] and [3]. Laue classes are sets of groups within partitions that each contain one

rotational group, a small number of groups isomorphic to the rotational group together with

a centrosymmetric group obtained as the direct product of any of these groups with space

inversion. This classification arose in X-ray diffraction because this process adds a centre

of symmetry to the crystalline group being observed. It is also of interest in areas such as

Raman spectroscopy because the process is also insensitive to space inversion. Table 1

Table 1 Point groups—Schoen-
flies notation

Partition System G �G Gi

[1,1,1] Triclinic C1 Ci

Monoclinic C2 Cs C2h

Orthogonal D2 C2v D2h

[2,1] Trigonal C3 S6

D3 C3v D3d

Tetragonal C4 S4 C4h

D4 C4v D2d D4h

Pentagonal C5 S10

D5 C5v D5d

Hexagonal C6 C3h C6h

D6 C6v D3h D6h

Heptagonal C7 S14

D7 C7v D7d

Octagonal C8 S8 C8h

D8 C8v D4d D8h

Infinite C? C?h

D? C?v D?h

[3] Tetrahedral T Th

Octahedral O Td Oh

Icosahedral I Ih
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shows Schoenflies groups arranged in Laue classes with a rotational group (G) in the left

column, non-rotational groups ( �G) of the same order in the two middle columns and a

centrosymmetric group (Gi) of twice the order on the right. The Schoenflies system labels

cyclic and dihedral rotational groups in the [1,1,1] and [2,1] partitions with symbols Cn and

Dn, using a notation now generally accepted for the corresponding abstract groups. Groups

of the [1,1,1] partition contain only those operations in which points on x, y, and z axes are

transformed into plus or minus themselves. These are groups in which the only allowed

operations are 180� rotations, combinations of such rotations with space inversion and the

identity operation. Groups of the [2,1] partition might transform points on two axes into

each other while always transforming points on the other axis, usually chosen to be z, into

plus or minus itself. Groups in the [3] partition contain operations that transform points on

all three axes into each other.

Non-rotational groups in these partitions are described by combinations of rotational motion

and mirror reflections in an ad-hoc variety of planes, producing arbitrary and unnecessarily

complex descriptions. For example, tetragonal dihedral groups in this table are given symbols

D4, C4v and D2d, suggesting that they are quite different in character even though they are three

instances of the same abstract group i.e. they are isomorphic groups. All groups in a given row

of the table have this property except for the right-hand column which contains centrosym-

metric groups that are simple products of the defining group with space inversion. It is the

complex use of mirror reflections in horizontal, vertical and diagonal positions together with

rotation-reflection combinations that makes the Schoenflies system so impractical and un-

helpful. Each group is treated separately, creating for each one a set of distinct rules and labels

that have to be applied to its representations through many pages of tables.

A much simpler presentation based on a minimum number of group generators is shown in

Table 2. A limited version of this approach was used in the derivation of crystallographic

point groups in higher dimensional spaces (Downward 2011) but references to that paper

may be unhelpful because of the different conventions used in crystallographic and mole-

cular work. The generator approach is used here to expose an underlying structure in the

Schoenflies system and to use that structure to simplify applications of representation theory.

Rotational cyclic groups of order n in the [1,1,1] and [2,1] sections of the table are

labeled n and are produced by repeated applications of a generator c ¼ 2p=n radians about

the z axis producing a series c; c2; c3; . . .; cn ¼ E. Dihedral rotational groups of order

2n require a second generator u, consisting of a 2-fold rotation about the y axis that does

not generally commute with cyclic rotations about the z axis. These groups are labeled by

adding letter u to the cyclic group to give symbol nu. Rotational groups of the [1,1,1]

partition contain only 2-fold rotations but it is convenient to consider them as part of a

continuous series of cyclic and dihedral groups which, in the [2,1] partition have greater

than 2-fold symmetry about the z-axis. Rotational groups in the [3] partition are limited to

tetrahedral, octahedral and icosahedral groups labeled 23, 43, 53 with orders 12, 24 and 60.

Tetrahedral and octahedral groups 23 and 43 are related in much the same way as cyclic

and dihedral groups in the lower partitions.

Space inversion (parity inversion) i inverts points on all three axes and this generator

forms a group of order 2. This is the only negative generator necessary to describe point

groups and their representations and, because it commutes with every other operation, it is

the best possible choice. There are two distinct procedures for forming non-rotational

groups from rotational groups

a. multiply one rotational group generator by space inversion to give groups �G
b. as direct product groups Gi of a rotational group G and the space inversion group.
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Generator c of cyclic group n may be multiplied by space inversion to produce a

negated generator �c as follows �c ¼ ic ¼ ci and the group generated shown as �n. Take as an

example, the 4-fold cyclic group multiplication table shown in Table 3. When the rota-

tional 4-fold generator (c) is negated to give generator �c ¼ ci a series of elements

�c; c2; �c3; . . .;E is produced. Space inversion commutes with all other operations and does

not therefore change the structure of the group so groups n and �n are distinct represen-

tations of the same abstract group. Consequently, the multiplication table for group �4
shown in Table 4 is structurally identical to that of group 4 in Table 3 and this will be true

for any two cyclic groups n and �n. Notice that space inversion cancels out in even num-

bered applications of the generator because even applications of space inversion cancel out

as follows: �c �c ¼ cici ¼ ccii ¼ c2

Rotational dihedral groups nu have two generators that can be negated, producing

isomorphic dihedral groups n�u and �nu belonging to the same Laue class and the same row

of the table. In the [3] partition only the octahedral Laue class contains a non-rotational

isomorph �43, this being the group that chemists usually describe as tetrahedral because of

its misleading Schoenflies label.

Table 2 Point groups—gen-
erator notation

Partition System G �G Gi

[1,1,1] Triclinic 1 i

Monoclinic 2 �2 2i

Orthogonal 2u 2�u 2ui

[2,1] Trigonal 3 3i

3u 3�u 3ui

Tetragonal 4 �4 4i

4u 4�u �4u 4ui

Pentagonal 5 5i

5u 5�u 5ui

Hexagonal 6 �6 6i

6u 6�u �6u 6ui

Heptagonal 7 7i

7u 7�u 7ui

Octagonal 8 �8 8i

8u 8�u �8u 8ui

Infinite ? ?i

?u ?�u ?ui

[3] Tetrahedral 23 23i

Octahedral 43 �43 43i

Icosahedral 53 53i

Table 3 Multiplication table for
group 4

E c c2 c3

E E c c2 c3

c c c2 c3 E

c2 c2 c3 E c

c3 c3 E c c2
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Non-rotational groups may also be formed as the direct product of a rotational group

and the parity inversion group, producing groups that contain the space inversion element

(i) itself. Centrosymmetric groups of this kind (Gi) derived from rotational groups G are

simple products Gþ iG. Thus the 4-fold cyclic group produces the centrosymmetric group

as follows

4i ¼ E; c; c2; c3
� �

þ i E; c; c2; c3
� �

A cyclic group n of order n has a direct product centred group ni of order 2n while a

dihedral group nu of order 2n forms a centred group nui of order 4n. Groups of the [3]

partition form centred groups 23i, 43i and 53i.

A given molecule is easily assigned to a point group by first finding its rotational group.

Once found this is either the final result or an index-2 subgroup of a very limited number of

non-rotational groups. Since there are so few possible larger groups the process is trivial

and does not require complex if–then–else tables. Imagine as an example the planar

benzene molecule shown in Fig. 1a with the z axis in the centre at right angles to the plane

and the y axis cutting through a pair of opposite carbon atoms. Generators 6 and u are

visibly present and therefore the molecule belongs to rotational group 6u. Space inversion

is also present so the highest order group for the molecule is 6ui. Figure 1b shows another

molecule with a 3-fold rotation about the z axis and a 2-fold rotation about the y axis so is

immediately assigned to the 3u rotational point group. This could be an index-2 subgroup

of 3ui or �6u but, since some non-rotational symmetry is obvious and it is not cen-

trosymmetric, it must be the latter.

Matrix representations

Matrix representations of groups are constructed to describe transformations of entities

such as atoms or vectors during symmetry operations. Matrix representations D(p) and

D(q) of group operations p and q multiply out according to the abstract group of the Laue

Fig. 1 Two hexagonal dihedral molecules with symmetries 6ui and �6u

Table 4 Multiplication table for

group �4
E �c c2

�c3

E E �c c2
�c3

�c �c c2
�c3 E

c2 c2
�c3 E �c

�c3 �c3 E �c c2
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class. Only matrices of the generator operations are required to construct all matrices for a

given group because, by definition, they generate the group elements. Matrices derived

from practical applications are generally reducible in that they may be reduced to a number

of irreducible representations (irreps) that are of interest in spectroscopic applications. It is

instructive to first look at the hexagonal classes of the [2,1] partition then broaden the

treatment to the general case and to the other partitions.

Cyclic groups of order n have n 1D irreps that are easily produced by repeated appli-

cations of generators ex where x takes values 1 to n and e = ei2p=n. Table 5 shows the

hexagonal case after some simplifications have been made. Irreps generated by e6 = ? 1

and e3 = -1 are labeled A and B while conjugate pairs of irreps from generators ex and

en-x=ex� are labeled Ex and E�x. These are stem symbols to which subscripts might be

added to represent irreps in dihedral and centrosymmetric groups. It is important to note

that value x in Ex and E�x is part of the stem, not an added subscript. Isomorphic cyclic

groups 6 and �6 have the same irrep table because they belong to the same abstract group

and irrep tables are characteristic to the abstract group. Polar vectors x, y and z are assigned

to different irreps in each concrete group because of the effect of space inversion. Notice

however that assignments for axial vectors are the same because they are not affected by

space inversion and those of products are the same because two inversions cancel out. As

shown below, the inclusion of these vector assignments in irrep and character tables of the

[2,1] partition is unnecessary because they follow a predictable pattern.

Base vector transformation matrices for generator c in the [2,1] partition describe a

clockwise rotation in the xy plane and may be shown in real or complex forms as follows

D cð Þ ¼
cos h � sin h 0

sin h cos h 0

0 0 1

0

@

1

A ¼
e�ih 0 0

0 eih 0

0 0 1

0

@

1

A

Powers D c2ð Þ, D c3ð Þ,… are easily derived by matrix multiplication. Complex forms of

base vector transformational matrices are diagonal and aiready reduced to their irreducible

representations. Clearly, x transforms as e�ih ¼ e�i2p=n which is E�1, y transforms as

eih ¼ ei2p=n which is is E1 and z transforms as A. It follows that base vectors in all such

groups in the [2,1] partition have transformations Aþ E1 þ E�1.

The negated rotational generator D cð Þ � D ið Þ ¼ Dð�cÞ has real and complex base vector

transformations

Table 5 Hexagonal cyclic irrep table
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Dð�cÞ ¼
� cos h sin h 0

� sin h � cos h 0

0 0 �1

0

@

1

A ¼
�e�ih 0 0

0 �eih 0

0 0 �1

0

@

1

A

In this case x transforms as �e�ih ¼ �e�i2p=n. Translating to irrep symbols allows a

simple equation

�et ¼ e
n
2
�tð Þ�

Thus irrep Et is ‘‘negated’’ to produce irrep E� n
2
�tð Þ and irrep E�t to produce E n

2
�tð Þ. A

little arithmetic now shows that the negations of E�1 and E1 are E n
2
�1ð Þ and E� n

2
�1ð Þ which

are in turn Emax and E�max where max is the largest value possible in a given cyclic group.

These results are true for any n-fold cyclic group �n in the [2,1] partition so the base vector

transformation matrices always reduce to Bþ Emax þ E�max.

Space inversion forms a group fE; ig with two irreps Ag and Au as shown in Table 6.

Polar vectors in this table transform as Au and axial vectors as Ag. Centrosymmetric groups

have irrep tables that are simply the products of those for the corresponding rotational

group and that shown in Table 6. The number of irreps is doubled, one half taking the

g subscript the other half the u subscript. It follows that the base vector assignments for all

groups in cyclic Laue classes of the [2,1] partition may be summarized as in Table 7.

Dihedral groups in the [2.1] partition contain pairs of cyclic elements cx and cn�x that

collapse into one dihedral class and corresponding pairs of cyclic irreps Ex and E�x that

collapse into a single 2D dihedral irrep Ex. On the other hand, 1D cyclic stems A and

B acquire subscripts 1 and 2, denoting uy generator values of 1 and -1, to give irreps

A1;A2;B1 and B2. Once again, this simplified Mulliken notation, based on the abstract

group of the Laue class, is used to label the hexagonal dihedral irreps in Table 8

Table 6 Irrep table for group i
E i

Ag 1 1 Rx,
Ry,Rz

Au 1 -1 x, y, z

Table 7 Base vector assign-
ments in [2,1] cyclic groups

n : Aþ E1 þ E�1

�n : Bþ Emax þ E�max

ni : Au þ E1u þ E�1u

Table 8 Hexagonal dihedral character table
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There is a clear correlation between base vector assignments for Ex=E�x pairs in the

cyclic table and 2D Ex assignments in the dihedral character table. Stem symbol irreps A

and B in the cyclic table also correlate to those of the dihedral table but subscripts have to

be added to represent values for the uy rotation. Notice that subscripts in Ex are part of the

stem because they arise from the main generator while those of A and B are additions to the

stem symbol. Base vectors x, y and z are transformed by the matix

DðuyÞ ¼
�1 0 0

0 1 0

0 0 �1

0

@

1

A

In which the character of the combined x and y transformations is clearly �1þ 1 ¼ 0

as it must be because Ex irreps depend only on the stem. However, the factor for the z

vector is -1 and so the 1D irrep carries subscript 2. Dihedral group n�u has the negated

generator

Dð�uyÞ ¼
�1 0 0

0 1 0

0 0 �1

0

@

1

A�
�1 0 0

0 �1 0

0 0 �1

0

@

1

A ¼
1 0 0

0 �1 0

0 0 1

0

@

1

A

and the z vector irrep carries subscript 1. It follows that base vector transformations in

groups of dihedral Laue classes of the [2,1] partition always have the values shown in

Table 9. A simple relationship exists between the assignments contained in this table.

Irreps for n�u are obtained from those of nu by negating the 1D subscripts i.e. switching

between 1 and 2. Those of n�u are obtained by negating the stem symbol i.e. switching

between A and B or between Ex and Eðn=2Þ�x where n is the cyclic order.

As already noted, space inversion has no effect on axial transformations or polar vector

products and it is possible to summarise these assignments as in Table 10. However, point

groups with main rotational axes of order 3 or 4 do not have E2 irreps and in these cases the

substitutions at the bottom of this table are necessary.

Table 9 Base vector assign-
ments in [2,1] dihedral groups

nu : A2 þ E1

n�u : A1 þ E1

�nu : B2 þ Emax

nui : A2u þ E1u

Table 10 Axial and product
base vector assignments for [2,1]
dihedral groups

Vector prod Irrep

z2, x2 ? y2 A1

Rz A2

Rx;Ry

� �
; ðxz; yzÞ E1

ðx2 � y2; xyÞ E2

3u ðx2 � y2; xyÞ E1

4u x2 � y2 B1

4u xy B2
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Irreducible representations in the [1,1,1] and [3] partitions

Groups of the [1,1,1] partition only have 1D irreps labeled by simple binary stems A and

B and subscripts 1,2, g and u. Triclinic group irreps are trivial while those of the 2-fold

cyclic and dihedral groups, called monoclinic and orthorhombic for historical reasons, are

easily derived from the orthorhombic form in Table 11. Irrep tables for the [1,1,1] partition

group include base vectors and their simple products x2; y2; z2; xy; xz and yz. Irreps and base

vector assignments for cyclic group 2 can be found by ignoring the dihedral subscripts.

Irreps and base vector assignments for centrosymmetric groups are found as in the [2,1]

partition. Simply add subscript u for polar vectors and g for rotational and polar product

vectors.

Tetrahedral and octahedral classes in the [3] partition behave in many ways like cyclic

and dihedral groups in the [2,1] partition. The tetrahedral group has one dimensional irreps

A;E1 and E�1 together with a three dimensional T irrep but in the octahedral super-group

the E1=E�1 pairs collapse into a 2D irrep while the A and T irreps acquire subscripts 1 and

2. In practice only octahedral groups 43, �43 and 43i are of much importance in this

partition and base vector assignments for these groups are equally well attached to the

octahedral table. Again the centrosymmetric group irreps and base vector assignments are

found as in the [2,1] partition.

The simplified Mulliken notation used above described above uses stem symbols

A;B;Ex and T with subscripts 1, 2, g and u. It is very useful to distinguish between even

and odd values for each of these symbols. Irrep A is always even while irrep B is even or

odd when n/2 is even or odd. Irrep symbols Ex are even or odd, depending on whether x is

an even or odd number. Subscripts 1 and g are even while 2 and u are odd.

Direct products of representations

Direct products of one-dimensional irreps are simple: products of two even or two odd

symbols are even while other products are odd. Direct products of 1D and 2D irreps depend

only on stems A and B as follows

A� Ex ¼ Ex B� Ex ¼ E n=2ð Þ�x

On other words a product with A reproduces a stem while one with B negates it. Direct

products of two 2D irreps are found by adding and subtracting stem numbers as follows

Ex � Ey ¼ Ey�x þ Eyþx

Table 11 Orthorhombic irrep
table
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Since the position is unimportant in direct products it is always possible to set x B y so

that the result contains only positive subscripts that can be interprested according to

Table 12

Direct products of 1 and 2D irreps in the [3] partition follow these same rules but higher

order irreps also occur. In practice only octahedral groups are of importance and only the

3D irreps of this group need to be considered.

Permutation matrix reduction

When a symmetry operation is applied to a molecule containing m atoms an m 9 m per-

mutation matrix traces the exchanges of equivalent atoms during the transformation. These

matrices, containing only integers 0 and 1, are images of group operations and so a

maximum number of 3 generator matrices is sufficient to produce all group operation

matrices. Such matrices are generally reducible and chemists use the ‘‘great orthogonality

theorem’’ to apply reductions. Unfortunately, the complex nature of the Schoenflies system

means that the theorem is applied to isolated groups with no recognition of their subgroups,

providing very little insight into the construction of irreps. Two examples now show how a

generator approach improves this situation

Consider first the six symmetrically equivalent carbon (or hydrogen) atoms of a planar

benzene molecule in Fig. 1a. Instead of attempting to find irreps for these atoms immedi-

ately in the highest order point group of the molecule (6ui) a stepwise approach is adopted,

first finding the irreps in 6, then 6u and finally 6ui. A few simple rules help. Firstly,

n equivalent atoms in a cyclic group of order n always yield one irrep of each kind in that

group so an hexagonal set produces the 6 irreps shown in the first line of Table 13. When

these cyclic group irreps are correlated to those of the dihedral group 6u the stem values of

the second line are obtained by inspection and only the 1D subscripts have to be added.

There are six carbon atoms but group 6u is of order 12 and in such cases only the even

subscript 1 appears, producing the 1D entries in the second line of Table 13. Finally, atoms

in the plane of a centrosymmetric molecule have subscript g on irreps with even stems and

u on irreps with odd stems. A stepwise approach of this kind is important because there is no

advantage in using a higher order point group than is necessary in a computation.

Transformations for x, y and z vectors placed on each of the six carbon atoms are direct

products of the permutation irreps of the molecule and the base vector transformation

irreps of 6ui as follows

Table 12 Interpretation of dihedral E subscripts

Subscript s 0 \n/2 n/2 [n/2

Result A1 ? A2 Es B1 ? B2 En-s

Table 13 Irreps for benzene
carbon atoms

Point group Carbon atoms

6 Aþ Bþ E1 þ E�1 þ E2 þ E�2

6u A1 þ B1 þ E1 þ E2

6ui A1g þ B1u þ E1u þ E2g
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ðA1g þ B1u þ E1u þ E2gÞ � A2u þ E1uð Þ

When this product is multiplied out according to the simplified rules above the result is

that which would have been obtained through applications the ‘‘great orthogonality the-

orem’’ acting on 18 dimensional matrices.

A second example is provided by the AB3 molecule of Fig. 1b that chemists describe as

‘‘trigonal planar’’ although in fact it belongs to the hexagonal group �6u of order 12. Again a

stepwise approach is adopted, first finding irreps in the cyclic group �6 then correlating these

results up to the higher order group. A central atom in any molecule has the highest level

symmetry possible and in this particular case the results shown in the first column of

Table 14 are obtained. Permutation matrices for the 3 pendent atoms reduce to just the

even cyclic irreps because only half of the hexagonal positions are populated. Again when

the permutation is correlated to the dihedral group a subscript 1 is added to the 1D irrep.

Permutation matrices for the whole AB3 molecule reduce to irreps 2A1 þ E2. Base

vector transformations for this molecule may be found from the direct product as follows

ð2A1 þ E2Þ � ðB2 þ E2Þ

Correlations of irreducible representations

Point group irreps can be correlated to subgroup irreps through a few simple rules. In the

[1,1,1] and [2,1] partitions the following rules apply

(a) Irreps of the main rotational axis n may be correlated to irreps of index-k subgroups

with main rotational axis order of n/k and in this case the stems of the irrep labels are

changed as follows

A! A

B! A k ¼ evenð Þ;B! B k ¼ oddð Þ
Ex ! Ex mod n=k

In the 2D case only the target subscript ðx mod n=kÞ is used in this calculation so it

could be applied to any 2D irrep from a higher order group. 2D irreps obtained from

such a correlation have to be interpreted according to Table 12 above. Dihedral

subscripts remain unchanged during stem correlations.

(b) Correlations from the irreps of dihedral groups (nu; n�u and �nu) to those of their

index-2 cyclic subgroups (n or �n) involve no more than removing subscripts from

1D irreps.

(c) Correlations from centrosymmetric group irreps to index-2 rotational or non-

rotational subgroups in the same Laue class are straightforward. Irreps with

g subscripts simply drop the subscript. An irrep with u subscripts being correlated to

Table 14 Irreps for AB
3

molecule
Point group A atom B atoms

�6 A Aþ E2 þ E�2

�6u A1 A1 þ E2
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a rotational group also just drops the u subscript. Correlations to non-rotational

isomorphs drop the u subscript and change as follows

ni! �n or nui! �nu negate irrep stem

nui! n�u negate dihedral subscript

In the [3] partition again only the octahedral groups 43 and �43 are of great interest and a

separate table correlating irreps with those of the [2,1] partition is required.

Function space vectors in symmetric environments

One-electron orbitals with quantum number l form a 2lþ 1 dimensional function space

that transforms similarly to the base vectors already described. For example, when l ¼ 2

there are five d orbital functions of form eimu where m ¼ 2; 1; 0;�1;�2 and if these

functions are rotated through a radians about the z axis the set of wave functions is

transformed as follows

e2iðuþaÞ

eiðuþaÞ

e0

e�iðuþaÞ

e�2iðuþaÞ

0

BBBB@

1

CCCCA
¼

e2ia 0 0 0 0

0 eia 0 0 0

0 0 e0 0 0

0 0 0 e�ia 0

0 0 0 0 e�2ia

0

BBBB@

1

CCCCA

e2iu

eiu

e0

e�iu

e�2iu

0

BBBB@

1

CCCCA

Cyclic group irreps E2;E1;A;E�1 and E�2 are obvious in this diagonal transformation

matrix and these cyclic irreps correlate upwards to dihedral group irreps E1;E2 and A1

because, for d orbitals, the rotation about the y axis is symmetric. Table 15 shows similar

results for l values from 0 to 6 in a 1u group environment (where the irrep pattern could

be expanded infinitely). Orbitals with even l quantum numbers are said to be even func-

tions and have 1D dihedral subscripts of 1 while odd functions have subscript 2. Subscripts

of 1D irreps in a 1�u environment have to be negated for odd functions but not for even

ones because space inversion has no effect in this case. In the centred case 1ui even

orbitals have g irreps and odd ones have u irreps.

Obviously, these irreps only occur when the orbitals are placed in a symmetric envi-

ronment that permits them and, in the [2,1] partition, the main axial rotation has to be

sufficiently large. Finite group irreps may be found by correlation from the infinite order

results in Table 15. For example, hexagonal group 6u in the [2,1] partition has irreps

obtained by correlating the general scheme above to the irreps available in that group,

Table 15 Atomic Orbital irreps
in ?u

l symbol irreps

0 s A1

1 p A2 þ E1

2 d A1 ? E1 ? E2

3 f A2 ? E1 ? E2 ? E3

4 g A1 ? E1 ? E2 ? E3 ? E4

5 h A2 ? E1 ? E2 ? E3 ? E4 ? E5

6 i A1 ? E1 ? E2 ? E3 ? E4 ? E5 ? E6
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producing the results shown in Table 16. Irreps for other point groups in the same Laue

class are fairly simply related to the rotational group of the class. Even orbital functions are

the same for all groups of a Laue class while those of odd orbital functions are obtained by

simple modifications of the rotational values. Representations for the 6�u symmetry envi-

ronment simply negate 1D subscripts of the rotational representations while those for �6u

just negate the stems. Irreps for 6ui simply add g and u subscripts for even and odd orbitals.

A similar table might be produced for all Laue classes including the octahedral groups 43,
�43 and 43i of the [3] partition.

In summary, it should be clear that the generator and abstract group approach above is

much more easily learned and applied than the traditional Schoenflies–Mulliken approach.

It can be seen as providing an insight into the subject or as an alternative method. Pages of

work in modern text books such as Willock produce simple results obscured by an archaic

notation. (Willock 2009). It would be much quicker and easier to work them out in the

simplified notation and convert the results back to the traditional notation. Cotton’s classic

1960s text describing the chemical applications of group theory adopts a similarly pon-

derous approach in which simple truths are hidden by a Byzantine methodology (Cotton

1990). All of these problems become more acute on moving to double groups and the

fermion irreps required by the Dirac equation. (Dyall and Faegri 2007). However, double

groups can also be organized in Laue classes in which double rotational group generators

are used to form isomorphs and centrosymmetric groups as above. Since these groups are

much larger, the saving in description and computation is even greater.
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Table 16 Atomic orbital irreps in hexagonal environments

6u 6�u �6u

s A1

p A2 þ E1 A1 þ E1 B2 þ E2

d A1 þ E1 þ E2

f A2 þ B1 þ B2 þ E1 þ E2 A1 þ B1 þ B2 þ E1 þ E2 B2 þ A1 þ A2 þ E1 þ E2

g A1 þ B1 þ B2 þ E1 þ 2E2

h A2 þ B1 þ B2 þ 2E1 þ 2E2 A1 þ B1 þ B2 þ 2E1 þ 2E2 B2 þ A1 þ A2 þ 2E1 þ 2E2

i 2A1 þ B1 þ B2 þ 2E1 þ 2E2
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